N
X< University
/XN of Basel

Polyglot Database Management Systems (PolyDBMSs):
Beyond Single-Model Solutions

Tutorial at the IEEE Big Data 2025

Marco Vogt <marco.vogt@unibas.ch>, Heiko Schuldt <heiko.schuldt@unibas.ch>

Databases and Information Systems (DBIS) Group
University of Basel, Switzerland

December 9th 2025

Let Me Introduce Myself

Marco Vogt

— Postdoctoral researcher and lecturer in the Databases
and Information Systems group at the University of
Basel

— Co-founder of Polypheny GmbH and initiator of the
open-source Polypheny project

— | work on how to make multiple data models and
engines feel like one coherent system, from schema and
query languages down to execution and optimization

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

What is this tutorial about?

Topic

Polyglot Database Management
Systems (PolyDBMSs) — database
systems that expose one logical
DBMS over multiple data models

and engines

Goal

Show how to manage relational,
document, graph, and other
data with mixed workloads
through a single query layer and

control plane

Perspective

Position PolyDBMSs among
multi-model DBMSs, polystores,
multistores, and polyglot

persistence

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

What we will do

— Introduce the core concepts, architecture, and components of a PolyDBMS (interfaces, schemas, mappings, optimizer,
routing, transactions, monitoring)

— Walk through schema modeling and language mappings for cross-model queries on a concrete example
— Demonstrate these ideas hands-on with the open-source Polypheny platform

By the end, you should:

— Understand when a PolyDBMS is useful and when a single engine is enough

— Have a mental model of how such a system is built and operated

— Be able to relate your own “polyglot persistence” setups to the PolyDBMS approach

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

Website
E .

..:|

0

II
J' n

-IrL
4 Y b

https://bigdata2025.polypheny.com/

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

Outline

1 Motivation: Why do we need PolyDBMS

2 Schema Model

3 Polypheny

4 Other Approaches and Systems

5 Hands-on: Polypheny

6 Limitations, Open Research Questions, and Outlook

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

A Brief History of Databases

1979

First commercial
relational

1962 database system

First usage of the
term “database”

=[]
O=C"1
C="1

1991

First Key-Value

database

2001

Emergence of

document 2015

databases Hybrid
transactional /
analytical
database systems
(HTAP)

1970

E. F. Codd invents
the relational
data model

1991
Start of the world
wide web

2003
Graph databases

1999
Analytical
databases

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 7

One Size Does Not Fit All

I O=C
- r D‘*E e
Relational Key-Value O= Document
— Data is represented as — Array-like data structure — Data is represented as
“tables” . collection of documents
— High performance and
— Structured data / data scalability — Unstructured data /
following a strict schema — Allows storing arbitrary following no schema
— Transactional workloads values — Nested data structures
_ J g J _ J
Y 4
r _ ' e r)\,
Analytical Label-Property Graph Vector DB 0 M
— Comes in various shapes, — Data is represented using — Collection of high-
e.g., based on the relational nodes and edges dimensional vectors
model — Good for storing and — Similarity search (nearest
— All items of a column are guerying relationships neighbors)
stored together
_ J _ J g J

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 8

Motivation: The Gavel Auction House

Auction System
*\
\
.

Heterogeneous Data

— Different data
models

— Structured and
unstructured data

— Interconnected

Auction ltem

Payment System

Recommendation

Catalog System
(i &= B
— d
Different Query Mixed Workloads
Languages

— Applications use
different query
languages

— Data needs to be
accessible using all
guery languages

Transactional
workloads

Analytical
workloads

Special functions

Business Analytics

<1

Consistent
Modification of Data

— Changes should be

available to all
applications

— ACID compliant

transactions

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

Multimodel DBMS, Polystores and HTAP Systems

N
/\ /—\
1 -
~—— I I |
N
O=C—] g O=>C
—— O=CJ — £ 1 O3 B
O=C] S &:/
v \Ef/ v
Multimodel DBMS Polystore HTAP System
+ Heterogenous data / multiple + Multiple query languages + DML queries
data models + Heterogenous data + Mixed transactional and
+ Large variety of (analytical) analytical workloads
- Need to reimplement existing workloads
work - Only structured data / one
- Typically one query language - No data manipulation support data model
- No DBMS functionality - No support for multiple

query languages

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 10

Multimodel DBMS

eS|

Heterogeneous Data Different Query Mixed Workloads
L
— Different data anguages — Transactional
models — Applications use workloads
different quer
— Structured and | R — Analytical
languages

unstructured data workloads

— Data needs to be : :
— Interconnected , _ — Special functions
accessible using all

guery languages

Consistent
Modification of Data

— Changes should be

available to all
applications

— ACID compliant

transactions

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

11

Polystores

Polystore
O
El

Heterogeneous Data Different Query Mixed Workloads

Languages
— Different data guag — Transactional

models — Applications use workloads

diff t
— Structured and AEIERRARE — Analytical

languages
unstructured data Sl workloads
— Data needs to be : :
— Interconnected) , — Special functions
accessible using all

guery languages

Consistent
Modification of Data

— Changes should be

available to all
applications

— ACID compliant

transactions

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

12

HTAP Systems

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 13

A New Kind of Database System

There is the need for a system that ...

— supports multiple query languages

— maintains data according to multiple data models
— provides good performance for mixed workloads

— enables cross-model queries

— supports data manipulation queries —

O Combining the concepts of polystores, multimodel
== database systems and HTAP systems

Polystore

O=>C 1
U=
O=>C]

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

14

PolyDBMS Overview

— A Polyglot Database Management System (PolyDBMS) is
a DBMS that exposes one logical system over multiple
data models and storage engines.

— It provides multiple query interfaces (e.g., SQL,

A4

document-style, graph-style) for the same underlying
data.

\ "4

— It maintains a central schema and catalog that integrate
heterogeneous engines and models.

Vv

— It plans, routes, and executes queries across engines,
pushing work down where possible.

\ "4

— It supports cross-model queries and heterogeneous
workloads.

A 4

PolyDBMS

\ 4

Vv

A\ 4

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

15

Independence of Storage Configuration

The Problem
— Data stores do not have the same set of features and T2 SIS €1 e €Y Gt b(.e lndependent of
capabilities — how and where the data is physically stored

— by which engine it has been processed
— Especially problematic with data modification queries

The available query languages, operations and functions
must not depend on the physical storage of the data.

Example: Day of Week (DoW)

Function that takes a timestamp and returns an integer
PostgreSQL: 0-6, Sunday is O

Oracle: 1-7, Sunday is 1

Only observable difference between storage
The solution configurations should be the execution time

— Integrate an execution engine into the PolyDBMS itself

— This engine is able to execute all queries

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 16

Schema Model

Schema Model: The Multimodel Challenge

— Each data models defines their own structure
and building blocks for organizing the data

— Each query language requires a certain structure

O[]
O]
O[]

— All thisis different!

— Queries across data models and storing data across
heterogenous data stores requires mappings
between schemas!

Y4

X$

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

18

Different Kinds of Schemas

(&

Exposed Schema

~

Building blocks are defined by the query language

Making semantic concepts from other data
models available

J

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

19

Different Kinds of Schemas

Exposed Schema

— Building blocks are defined by the query language

— Making semantic concepts from other data
models available

Physical Schema
— Building blocks are defined by the data store

— Storing data for efficient querying
— Utilizing features of the data store

(& J

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

20

Different Kinds of Schemas

Exposed Schema
— Building blocks are defined by the query language
— Making semantic concepts from other data

models available _
\ i;h N A
_\ 0 —] ‘/ @
\Lé g/

Logical Schema

— The central schema of the PolyDBMS
— Building blocks from all supported data models
— Enabling cross-model queries

\ J

Physical Schema

— Building blocks are defined by the data store
— Storing data for efficient querying

— Utilizing features of the data store

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

21

Namespaces

The logical schema S is a set of namespaces N:

S = {Nll Nz, ,Nm} Wlthm EN

— Every namespace has a uniqgue name and is
of a specific data model

— This model defines the available set of
schema building blocks

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

22

The Gavel Schema

Logical Schema

auctions

bids

Type: relational Type: document

Namespace “customer”

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

Exposed Schema

I . .. I
1 Example: The shipment application needs to access the I
: address of a customer through a relational query interface. :

<customer,
vip>
id: 55
name: Hanna
address: Basel

<knows>

NLPG .= (name, G)

NREL .= (name, {Ty, ..., T,,}) withn € N

<customer>
id: 285
name: Bob
address: Liestal

LPG REL
—>
N N <knows>

<customer>
id: 96
name: Alice
address: Holstein

O Map node labels as tables and mimic the
= concept of join tables

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 24

customer

LPG — REIatlonaI id properties labels
55 name: Hanna, address: Basel customer, vip
285 name: Bob, address: Liestal customer
96 name: Alice, address: Holstein customer
<customer, vip

vip> <knows> : :

: P id properties labels

id: 55
55 name: Hanna, address: Basel customer, vip

name: Hanna

address: Basel <customer>

customer->customer

id: 285 src tgt properties labels
name: Bob - - ’
_ NOws
<knows> address: Liestal
96 55 knows
customer->vip
<cu $.>t omer> src tgt properties labels
id: 96
. 96 55 knows
name: Alice
address: Holstein vip->customer
src tgt properties labels
55 285 knows

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

25

LPG — Relational

NLPG .= (name, G) i
vip>

NREL id: 55

:= (name, {T4, ..., T,,}) withn € N

NLPG , NREL

(name, G) — <TL’1 (NLPG), ntab(nz (NLPG)) U etab(nz (NLPG))>

ntab(G) := {(x (id, props, labels)) | X € labelsOf(G)}

<customer,

name: Hanna
address: Basel

<customer>
id: 96
name: Alice
address: Holstein

<customer>
id: 285
name: Bob
address: Liestal

¥

etab(G) = {(x—>y, (src, tgt, props, labels)) | x,y € labels Of(G)} tab etab
/Customer \ (customer->customer N\
” Droperties labels src tgt properties labels
55 name: Hanna, address: Basel customer, vip 55 285 knows
285 name: Bob, address: Liestal customer 96 55 knows
96 name: Alice, address: Holstein customer customer- >Vip
- There are similar mappings for the other pairs of data vip o E s e
96 55 nows
models and for mapping to the physical schema o poperts e ,
55 name: Hanna, address: Basel customer, vip vip->customer
\. J src gt properties labels
\ 55 285 knows _J
Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 26

Polypheny

Our Implementation of a PolyDBMS: Polypheny

Polypheny
S
_ N—
Execution
Engine >
O —
N
N— —
a 013
> g
] I O
_rrrn —
) I I |
N—

Using existing established and domain-
optimized DBMS as storage and execution
engines

An integrated execution engine that
compensates missing features and processes
joins

Supports cross-model queries and replication
Enforces constraints across stores

Utilizes the optimization and domain-
knowledge of specialized systems

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

28

An Exam ple Query Logical Schema

Namespace “auction” Namespace “product”
SELECT o—
O —
i.id as "Item", auctions o—
- e items see
c.properties[id] as "Address", bids
Type: relational Type: document

i.weight as "Weight"

Namespace “customer”

FROM
product.items 1i,
customer.customer c,

auction.auctions a,

auction.pbids b Type:lpg
WHERE

1.1d = a.item and Item Address Weight

c.id = b.customer and

5 id = b.auction and 56895 Polypheny-Str. 1, Basel 2.3

b.winner = true and 89626 PolyDBMS Weg 5, Liestal 0.5

a.paid = true and 59648 Chronos-Str. 3, Holstein 1.7

a.shipped = false

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

PolyAlgebra — REL
attributes: [title, start_date, name]
— Preserves the semantics of the individual data models I REL
Filter
— Avoids mapping queries into a specific data model condition: =(item, 34)
— Can be extended to incorporate additional data models I
Inner Join REL
condition: =(item, id)
SELECT
a.title, L
a.start date, I I
ca REL REL
u.email 9 Project Project
FROM attributes: [title, start_date, item] attributes: [id, name]
auctions a,
customer .customer c I I
WHERE REL REL
a.customer = c.id AND Sc:?m _ _ Scz.m _
c.id = 34 entity: auction.auctions entity: product.items
30

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

Logical

attribute: distance
direction: desc

Filter REL

condition: =(category, 67) AND
>(distance, 0.7)

Project REL

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

REL
Scan

entity: auction_view

Logical

attribute: distance
direction: desc

Expanded View

Sort REL

attribute: distance
direction: desc

Filter REL
condition: =(category, 67) AND

>(distance, 0.7)

Filter REL
condition: =(category, 67) AND

>(distance, 0.7)

Project REL

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

Project REL

attributes: [title, category, distance]
exp: [title, category, d(feature, [0,1,1])]

REL
Scan

entity: auction_view

Project poc

fields: [title, category, feature]
exp: [title, category, feature]

Match boc
condition: 3(title) AND 3(category)

AND 3(feature)

DOC
Scan

collection: auction

Processing

Logical

attribute: distance
direction: desc

Expanded View

Sort REL

attribute: distance
direction: desc

Physical

Filter REL
condition: =(category, 67) AND

Sort ENG

attribute: distance
direction: desc

>(distance, 0.7)

Filter REL
condition: =(category, 67) AND

Project REL

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

>(distance, 0.7)

Filter ENG
condition: =(category, 67) AND

Project REL

attributes: [title, category, distance]
exp: [title, category, d(feature, [0,1,1])]

>(distance, 0.7)

REL
Scan

entity: auction_view

Project ENG

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

Project poc

fields: [title, category, feature]
exp: [title, category, feature]

Project ENG

fields: [title, category, feature]
exp: [title, category, feature]

Match boc
condition: 3(title) AND 3(category)

AND 3(feature)

Match ENG
condition: 3(title) AND 3(category)

DOC
Scan

collection: auction

AND 3(feature)

|

ENG
Converter

DS1
Scan

collection: auction@Storel

Processing

Planning & Routing

Logical

attribute: distance
direction: desc

Expanded View

Sort REL

attribute: distance
direction: desc

Physical

Filter REL
condition: =(category, 67) AND

Sort ENG

attribute: distance
direction: desc

Optimized Physical

>(distance, 0.7)

Filter REL
condition: =(category, 67) AND

Sort ENG

attribute: distance
direction: desc

Project REL

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

>(distance, 0.7)

Filter ENG
condition: =(category, 67) AND

Project REL

attributes: [title, category, distance]
exp: [title, category, d(feature, [0,1,1])]

>(distance, 0.7)

) ENG
Filter

condition: >(distance, 0.7)

Project ENG

attributes: [title, category, distance)
exp: [title, category, d(feature, [0,1,1])]

Project ENG

attributes: [title, category, distance)
exp: [title, category, d{feature, [0,1,1])]

ENG

Project Ds1

Match DS1
condition: 3(title) AND =(category, 67)

DS1

Scan REL Project boc Project ENG
Aty atctt) fields: [title, category, feature) fields: [title, category, feature) Converter
entity: auction_view exp: [title, category, feature] exp: [title, category, feature]
Match boc Match ENG
condition: A(title) AND 3(category) condition: A(title) AND 3(category) fields: [title, category, feature]
AND 3(feature) AND 3(feature) exp: [title, category, feature]
DOC ENG
Scan
ollection: auct] Converter
collection: auction AND 3(feature)
DS1
Scan Scan
collection: auction@Storel collection: auction@Storel
Processing Planning & Routing Optimization

Polypheny in Detail

Heterogeneous
Multimodel data

Polypheny

Different query
languages

* PolySQL

* MongoQL

e REST

e CQL

* PolyPig

 Cypher

PolyDBMS

Execution
Engine

Qﬁ

Data Stores

—
—

relational

model
v

—
~— A

document

model

L1111

—
~— A

graph

Data Source Adapters

Cassandr

Cottontail-DB

DuckDB
File
HSQLDB

model

MonetDB
MongoDB
Neo4j

* PostgreSQL

d

External data sources

CSV / JSON Files
Ethereum Blockchain
Excel

Google Docs
MariaDB / mySQL
MonetDB
PostgreSQL

File System

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

35

Other Approaches and Systems

— Multi-model DBMSs (e.g., ArangoDB, OrientDB, PostgreSQL+JSONB)

One engine that supports several data models internally. They unify models, but not multiple heterogeneous engines.

— Polystores and multistores (e.g., BigDAWG, research polystores)
Federate queries over diverse engines. Strong at cross-engine access, usually around one main query language.

— SQL-on-everything / data virtualization (e.g., Trino/Presto, Drill, Calcite-based systems, Denodo-like platforms)
Provide a single SQL interface over many sources, often via virtual views, with limited polyglot query capabilities.

— HTAP DBMSs (e.g., hybrid transactional/analytical systems)
Combine OLTP and OLAP in one engine, typically for a single primary data model.

PolyDBMSs go beyond these by offering polyglot query interfaces, explicit logical schemas and mappings, and a DBMS-
style control plane that coordinates multiple engines, models, and HTAP workloads as one system.

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

36

4)
Release for major platforms and
comprehensive documentation

available on polypheny.org

/

CB Google Summer of Code

-~

Interfaces: Languages:

- JDBC - SQL

- REST - Cypher

- Python - MongoQL
- HTTP - CaL

PIG

~

J

_ J

Polypheny

s |12

open source

-
/

_ J

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

37

Hands On

Limitations and when not to use a PolyDBMS

— Overhead vs. a single engine
A PolyDBMS adds parsing, optimization, routing, and coordination. If the workload fits well into one mature engine, that
extra layer may just add latency and complexity.
You pay for flexibility

— Simple, single-model workloads
If there is only one data model (e.g., purely relational OLTP or purely analytical SQL on a warehouse), a specialized
DBMS is usually simpler, faster, and easier to operate.

— Very tight latency or extreme throughput SLAs
Cross-engine queries, data movement, and coordination can make it hard to meet ultra-low-latency or hard real-time

constraints.

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025 39

Future Work

X

] Distributed PolyDBMS
I y
—O= _

O Self-adaptiveness
—O=

V Data streams and continuous queries

Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions - Tutorial - IEEE Big Data 2025

40

Thank you!

so.> SELECT * FROM questions

w> db.questions.find()

cyphers MATCH (g:questions) RETURN g

» PolyDBMSs unify many engines and models as one DBMS

One logical system exposes polyglot query interfaces (SQL,
document, graph, ...) over heterogeneous stores, rather
than gluing separate databases together.

A central schema model and mappings make cross-model
queries possible

Exposed, logical, and physical schemas, with explicit
mappings between them, decouple application schemas
from physical storage and data models.

PolyDBMSs are powerful but not always the right tool
For simple, single-model workloads or ultra-tight SLAs, a
single specialized engine remains the better choice.

contact: marco.vogt@unibas.ch

	Standardabschnitt
	Slide 1: Polyglot Database Management Systems (PolyDBMSs): Beyond Single-Model Solutions
	Slide 2: Let Me Introduce Myself
	Slide 3: What is this tutorial about?
	Slide 4: What we will do
	Slide 5: Website
	Slide 6: Outline

	Motivation
	Slide 7: A Brief History of Databases
	Slide 8: One Size Does Not Fit All
	Slide 9: Motivation: The Gavel Auction House
	Slide 10: Multimodel DBMS, Polystores and HTAP Systems
	Slide 11: Multimodel DBMS
	Slide 12: Polystores
	Slide 13: HTAP Systems
	Slide 14: A New Kind of Database System
	Slide 15: PolyDBMS Overview
	Slide 16: Independence of Storage Configuration

	Schema Model
	Slide 17: Schema Model
	Slide 18: Schema Model: The Multimodel Challenge
	Slide 19: Different Kinds of Schemas
	Slide 20: Different Kinds of Schemas
	Slide 21: Different Kinds of Schemas
	Slide 22: Namespaces
	Slide 23: The Gavel Schema
	Slide 24: Exposed Schema
	Slide 25: LPG ⟼ Relational
	Slide 26: LPG ⟼ Relational

	Polypheny
	Slide 27: Polypheny
	Slide 28: Our Implementation of a PolyDBMS: Polypheny
	Slide 29: An Example Query
	Slide 30: PolyAlgebra
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Polypheny in Detail

	Other Approaches
	Slide 36: Other Approaches and Systems

	Wrap Up
	Slide 37
	Slide 38: Hands On
	Slide 39: Limitations and when not to use a PolyDBMS
	Slide 40: Future Work
	Slide 41: Thank you!

	Backlog
	Slide 42: Backup Slides
	Slide 43: Evaluation
	Slide 44: Results for Different Read/Write Ratios
	Slide 45: Results for Different Read/Write Ratios – Optimized
	Slide 46: Is a PolyDBMS a Solution for Gavel?
	Slide 47: Database Data Models
	Slide 48: Expected Capabilities of a PolyDBMS
	Slide 49: Schema Model
	Slide 50: Mappings
	Slide 51: Mapping-LPG-Doc
	Slide 52: Mapping-LPG-Doc
	Slide 53: Evaluating a PolyDBMS
	Slide 54: Classification of Data Models
	Slide 55: Query Plan (1)
	Slide 56: Push Down
	Slide 57: DML Queries
	Slide 58: Parallel Modify
	Slide 59: Stream Iterator
	Slide 60: Enforcement of Constraints
	Slide 61: Query Routing
	Slide 62: Query Routing
	Slide 63: Parameterization
	Slide 64: Deployment of Polypheny
	Slide 65: Polypheny Architecture
	Slide 66: Polyfier
	Slide 67: PolyBase
	Slide 68: RHEEM
	Slide 69: BigDAWG
	Slide 70: ESTOCADA
	Slide 71: CloudMdsQL
	Slide 72: Query Representation: The Problem
	Slide 73: Query Routing: The Problem
	Slide 74: The Example Query
	Slide 75: Common Approach
	Slide 76: The PolyAlgebra Approach
	Slide 77: PolyAlgebra
	Slide 78: Four Phase Query Routing
	Slide 79: Back to the Gavel Scenario
	Slide 80: One Query To Explain Them All
	Slide 81: Overhead for Different Types of Workloads
	Slide 82: Overhead for Different Types of Workloads
	Slide 83: Results for Different Read/Write Ratios – Unoptimized
	Slide 84: The Research Question
	Slide 85: The Research Aim
	Slide 86: Motivation: Gavel
	Slide 87: Motivation: Gavel
	Slide 88: Issues with such a integration of data and applications
	Slide 89: It is not that simple…
	Slide 90: It is not that simple…
	Slide 91: Approach 1: Synchronize data between stores
	Slide 92: Approach 2: Adjust applications
	Slide 93: Approach 3: One size fits all
	Slide 94: Approach 4: Existing Polystore systems
	Slide 95: Approach 5: A HTAP system
	Slide 96: Approach 4: A new kind of DBMS
	Slide 97: Approach 1: Everything in memory
	Slide 98: The Lidl disaster
	Slide 99: Approach 2: A monolithic system
	Slide 100: Approach 3: A middleware that routes queries to other databases
	Slide 101: We need a combination of those approaches
	Slide 102: Motivation: Gavel
	Slide 103: Motivation: Gavel
	Slide 104: Motivation: Gavel
	Slide 105: Motivation: Gavel
	Slide 106: Motivation: Gavel

